341. The Structure of Macusine-A: X-Ray Analysis of Macusine-A Iodide.

By A. T. MCPHAIL, J. MONTEATH ROBERTSON, and G. A. SIM.

In order to determine the molecular structure of macusine-A, a quaternary alkaloid isolated from Strychnos toxifera, the iodide has been subjected to X-ray analysis. The crystals are orthorhombic, space group $P2_12_12_1$ (D_2^4), with four molecules of $C_{22}H_{27}N_2O_3I$ in the unit cell of dimensions a = 13.82, b = 9.06, c = 17.43 Å. Phase determination based initially on the iodine atom with subsequent Fourier and least-squares refinement methods led to the constitution and stereochemistry (apart from absolute configuration) given in formula (IV).

Among the quaternary alkaloids isolated 1 from Strychnos toxifera are macusine-A and macusine-B. By detailed chemical study involving correlation with ajmaline² (I) and sarpagine³ (II), macusine-B has been shown⁴ to have structure (III), the only

Scarcity of uncertain point being the configuration of the ethylidene system. material precluded an unambiguous chemical derivation of the structure of macusine-A

 Battersby, Binks, Hodson, and Yeowell, J., 1960, 1848.
Bartlett, Sklar, Taylor, Schlittler, Amai, Beak, Bringi, and Wenkert, J. Amer. Chem. Soc., 1962, 84, 622.

³ Bartlett, Sklar, and Taylor, J. Amer. Chem. Soc., 1960, 82, 3790. ⁴ Battersby and Yeowell, Proc. Chem. Soc., 1961, 17.

and at the suggestion of Dr. A. R. Battersby we undertook an X-ray investigation of macusine-A iodide. After a number of cycles of three-dimensional Fourier syntheses and least-squares refinement of positional and thermal atomic parameters our final results establish the constitution and stereochemistry (apart from absolute configuration) of the alkaloid to be as in (IV); chemical studies at Bristol ⁵ are consistent with this structure. The absolute stereochemistry shown in (IV) has been defined ⁵ by a chemical correlation with macusine-B (III).

The final electron-density distribution for macusine-A iodide is shown in Fig. 1 as superimposed contour sections drawn parallel to (010) and covering the region of one

FIG. 1. Final three-dimensional electron-density distribution for macusine-A iodide shown by means of superimposed contour sections drawn parallel to (010). Contour interval le/Å³ except around the iodide ion where it is 5e/Å³.

molecule; the corresponding atomic arrangement is explained in Fig. 2. The interatomic distances and valency angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2. The standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals (see Experimental section) and are shown in Table 3; from the results the average estimated standard deviation (e.s.d) of a carbon-carbon bond length is about 0.07 Å and the average e.s.d. of a valency angle about 4° .

The average bond length in the benzene ring, 1.41 Å, and the average carbon-carbon single bond length, 1.57 Å, do not differ significantly from the accepted values of 1.397 Å

⁵ Battersby, personal communication; McPhail, Robertson, Sim, Battersby, Hodson, and Yeowell, *Proc. Chem. Soc.*, 1961, 223.

TABLE 1.

Atomic co-ordinates.

(Origin of co-ordinates as in "International Tables." *)

Atom	x a	y/b	z c	Atom	x a	v/b	z c	Atom	x a	v/b	x/c
N(1)	0.7927	0.2613	0.3229	C(11)	0.6782	0.1861	0.1342	C(20)	0.7490	0.3122	0.6260
C(2)	0.7402	0.2981	0.3830	C(12)	0.7558	0.2075	0.1824	$\tilde{C}(\bar{2}1)$	0.7405	0.4539	0.5774
C(3)	0.7777	0.3322	0.4615	C(13)	0.7394	0.2386	0.2594	$\tilde{C}(22)$	0.5622	0.1778	0.6138
N(4)	0.7120	0.4285	0.5038	C(14)	0.8075	0.1829	0.5081	$\tilde{C}(23)$	0.6873	0.5701	0.4638
C(5)	0.6077	0.3385	0.4993	C(15)	0.7321	0.1785	0.5779	C(24)	0.5208	0.0288	0.7220
C(6)	0.5674	0.3277	0.4224	C(16)	0.6190	0.1871	0.5464	O(25)	0.5808	0.0598	0.6571
C(7)	0.6399	0.3016	0.3646	C(17)	0.6080	0.0505	0.5001	O(26)	0.4999	0.2575	0.6303
C(8)	0.6364	0.2584	0.2852	C(18)	0.7759	0.1809	0.7551	O(27)	0.5096	0.0256	0.4856
C(9)	0.5600	0.2436	0.2323	C(19)	0.7633	0.3155	0.7011	I	0.9499	0.8024	0.4287
C(10)	0.5774	0.2139	0.1622	• •						0 0021	0 1201
*	" Intorn	ational 7	Cables for	v D	C						

* "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, 1952, Vol. I.

TABLE 2.

Interatomic distances (Å) and angles.

Intramolecular bonded distances

$\begin{array}{c} N(1)-C(2)\\ C(2)-C(3)\\ C(3)-C(14)\\ C(3)-N(4)\\ N(4)-C(23)\\ N(4)-C(21)\\ N(4)-C(5)\\ C(5)-C(6) \end{array}$	1·32 1·50 1·64 1·46 1·50 1·36 1·66 1·46	$\begin{array}{c} C(6)-C(7)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(10)-C(11)\\ C(11)-C(12)\\ C(12)-C(13)\\ C(13)-N(1) \end{array}$	$1 \cdot 44$ $1 \cdot 44$ $1 \cdot 41$ $1 \cdot 28$ $1 \cdot 50$ $1 \cdot 38$ $1 \cdot 39$ $1 \cdot 35$	$\begin{array}{c} C(13)-C(8)\\ C(2)-C(7)\\ C(14)-C(15)\\ C(15)-C(16)\\ C(5)-C(16)\\ C(16)-C(17)\\ C(17)-O(27)\\ C(16)-C(22) \end{array}$	1.50 1.42 1.59 1.66 1.61 1.48 1.40 1.42	$\begin{array}{c} C(22)-O(26)\\ C(22)-O(25)\\ O(25)-C(24)\\ C(15)-C(20)\\ C(18)-C(19)\\ C(19)-C(20)\\ C(20)-C(21) \end{array}$	$1 \cdot 16$ $1 \cdot 33$ $1 \cdot 43$ $1 \cdot 50$ $1 \cdot 55$ $1 \cdot 31$ $1 \cdot 55$
		Intramole	ecular n	on-bonded distances			
$\begin{array}{l} N(1) \cdots C(14) \\ N(1) \cdots C(23) \\ C(2) \cdots C(5) \\ C(2) \cdots C(15) \\ C(2) \cdots C(16) \\ C(2) \cdots C(17) \\ C(2) \cdots C(23) \\ C(3) \cdots C(16) \\ C(3) \cdots C(16) \\ C(3) \cdots C(16) \\ C(3) \cdots C(17) \\ C(3) \cdots C(20) \\ N(4) \cdots C(7) \end{array}$	$\begin{array}{c} 3.33\\ 4.00\\ 2.76\\ 3.57\\ 3.45\\ 3.54\\ 2.93\\ 2.99\\ 2.95\\ 3.53\\ 2.92\\ 2.86\end{array}$	$\begin{array}{c} \mathrm{N}(4) \cdots \mathrm{C}(15) \\ \mathrm{N}(4) \cdots \mathrm{C}(17) \\ \mathrm{N}(4) \cdots \mathrm{C}(22) \\ \mathrm{C}(5) \cdots \mathrm{C}(24) \\ \mathrm{C}(5) \cdots \mathrm{C}(20) \\ \mathrm{C}(5) \cdots \mathrm{C}(20) \\ \mathrm{C}(5) \cdots \mathrm{C}(27) \\ \mathrm{C}(6) \cdots \mathrm{C}(27) \\ \mathrm{C}(6) \cdots \mathrm{C}(22) \\ \mathrm{C}(6) \cdots \mathrm{C}(23) \\ \mathrm{C}(6) \cdots \mathrm{C}(27) \\ \mathrm{C}(7) \cdots \mathrm{C}(16) \end{array}$	2.62 3.71 3.62 3.10 2.97 2.82 3.15 2.91 3.60 2.85 3.06 3.35	$\begin{array}{c} C(7) \cdots C(17) \\ C(7) \cdots C(23) \\ C(14) \cdots C(17) \\ C(14) \cdots C(19) \\ C(14) \cdots C(21) \\ C(14) \cdots C(21) \\ C(15) \cdots C(18) \\ C(15) \cdots C(18) \\ C(15) \cdots O(25) \\ C(15) \cdots O(26) \\ C(16) \cdots C(21) \\ C(16) \cdots C(24) \\ C(17) \cdots O(25) \end{array}$	3.31 3.06 3.01 2.88 3.85 3.15 2.73 3.41 2.99 3.64 2.76	$\begin{array}{ccccc} C(17) & \cdots & O(26) \\ C(18) & \cdots & O(25) \\ C(19) & \cdots & C(22) \\ C(20) & \cdots & C(22) \\ C(20) & \cdots & C(23) \\ C(20) & \cdots & C(23) \\ C(20) & \cdots & O(25) \\ C(20) & \cdots & O(26) \\ C(22) & \cdots & O(27) \\ C(24) & \cdots & O(27) \\ O(26) & \cdots & O(27) \\ O(26) & \cdots & O(27) \end{array}$	3·30 3·38 3·40 3·51 2·86 3·78 3·30 3·48 2·72 2·63 3·16 3·28
., .,		Intermo	lecular	distances $(< 4 \text{ Å})$		0(10) 0(11)	0 20
$\begin{array}{c} N(1) \cdots O(26)_{I} \\ O(25) \cdots C(12)_{II} \\ I \cdots O(27)_{I} \\ C(3) \cdots O(26)_{I} \\ O(26) \cdots C(24)_{III} \\ C(21) \cdots C(12)_{IV} \\ C(3) \cdots O(27)_{I} \end{array}$	2·98 3·34 3·43 3·56 3·57 3·57 3·57	$\begin{array}{c} C(21) \cdots C(11)_{IV} \\ C(2) \cdots O(26)_{I} \\ C(14) \cdots O(26)_{I} \\ C(15) \cdots C(11)_{II} \\ N(1) \cdots C(24)_{I} \\ C(18) \cdots C(12)_{II} \\ C(18) \cdots C(12)_{II} \\ C(14) \cdots C(6)_{I} \end{array}$	3.59 3.63 3.64 3.66 3.76 3.77 3.79	$\begin{array}{c} C(18) \cdots C(13)_{II} \\ C(24) \cdots C(12)_{II} \\ C(14) \cdots O(27)_{I} \\ C(21) \cdots O(27)^{I} \\ N(1) \cdots C(22)_{I} \\ C(24) \cdots I_{IV} \end{array}$	3.81 3.82 3.85 3.88 3.92 3.93	$\begin{array}{c} C(15) \cdots C(12)_{II} \\ I \cdots C(23)_V \\ C(18) \cdots C(11)_{II} \\ C(18) \cdots C(9)_I \\ C(14) \cdots C(11)_{II} \\ I \cdots C(11)_{IV} \end{array}$	3.95 3.95 3.99 3.99 4.00 4.00
The subscripts	refer	to the following pos	sitions	:			
I II III I	$\frac{1}{2} - x$ $- x,$	$\frac{1}{2} - y, 1 - z.$, $-y, \frac{1}{2} + z.$ $\frac{1}{2} + y, 1\frac{1}{2} - z.$		$\begin{bmatrix} IV & 1 \\ V & \frac{1}{2} \end{bmatrix}$	$\frac{1}{2} - x$, + x,	$1 - y, \frac{1}{2} + z,$ $1\frac{1}{2} - y, 1 - z.$	
			Interbo	nd angles			
$\begin{array}{c} C(13)N(1)C(2)\\N(1)C(2)C(3)\\N(1)C(2)C(7)\\C(3)C(2)C(7)\\C(2)C(3)N(4)\\C(2)C(3)C(14)\\N(4)C(3)C(14)\\C(3)N(4)C(5)\\C(3)N(4)C(21)\\C(3)N(4)C(21)\\C(3)N(4)C(22)\\C(5)N(4)C(22)\\C(5)N(4)C(23)\\C(21)N(4)C(23)\\\end{array}$	113° 126 111 123 112 112 113 103 113 115 112 102 111	$\begin{array}{l} N(4)C(5)C(6)\\ N(4)C(5)C(16)\\ C(6)C(5)C(16)\\ C(5)C(6)C(7)\\ C(2)C(7)C(6)\\ C(2)C(7)C(8)\\ C(2)C(7)C(8)\\ C(7)C(8)C(9)\\ C(7)C(8)C(9)\\ C(7)C(8)C(13)\\ C(9)C(8)C(13)\\ C(9)C(8)C(13)\\ C(9)C(8)C(10)\\ C(9)C(10)\\ C(10)C(11)\\ C(10)\\ C(11)C(12)\\ \end{array}$	114° 108 117 113 122 104 134 133 107 120 120 122 120	$\begin{array}{c} C(11)C(12)C(13)\\ N(1)C(13)C(8)\\ N(1)C(13)C(12)\\ C(3)C(12)\\ C(3)C(12)\\ C(3)C(12)\\ C(3)C(14)C(15)\\ C(14)C(15)C(16)\\ C(14)C(15)C(20)\\ C(16)C(15)C(20)\\ C(5)C(16)C(15)\\ C(5)C(16)C(17)\\ C(5)C(16)C(17)\\ C(5)C(16)C(17)\\ C(15)C(16)C(17)\\ C(15)C(16)C(17)\\ C(15)C(16)C(17)\\ C(15)C(16)C(17)\\ \end{array}$	119° 105 137 118 104 112 108 107 107 115 115 115 104 104	$\begin{array}{c} C(17)C(16)C(22)\\ C(16)C(17)O(27)\\ C(18)C(19)C(20)\\ C(15)C(20)C(19)\\ C(15)C(20)C(21)\\ C(19)C(20)C(21)\\ N(4)C(21)C(20)\\ C(16)C(22)O(25)\\ C(16)C(22)O(25)\\ C(16)C(22)O(26)\\ O(25)C(22)O(26)\\ IO(27)_{I}C(17)_{I}\\ C(2)N(1)O(26)_{I} \end{array}$	110° 109 127 127 110 123 114 114 125 120 107 109

TABLE 3.

Standard deviations of the final atomic co-ordinates (A).													
Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$		
N(1)	0.042	0.032	0.034	C(11)	0.055	0.050	0.047	C(20)	0.053	0.051	0.043		
$\hat{C}(\hat{2})$	0.047	0.048	0.040	C(12)	0.061	0.045	0.045	C(21)	0.058	0.049	0.051		
$\tilde{C}(\tilde{3})$	0.057	0.053	0.053	C(13)	0.053	0.038	0.043	C(22)	0.054	0.044	0.042		
N(4)	0.046	0.037	0.037	C(14)	0.056	0.053	0.048	C(23)	0.069	0.048	0.056		
C(5)	0.061	0.054	0.052	C(15)	0.049	0.047	0.048	C(24)	0.070	0.051	0.043		
C(6)	0.045	0.040	0.041	C(16)	0.059	0.045	0.046	O(25)	0.032	0.032	0.030		
C(7)	0.058	0.052	0.044	C(17)	0.053	0.052	0.054	O(26)	0.033	0.031	0.034		
Č(8)	0.058	0.040	0.043	C(18)	0.057	0.048	0.048	O(27)	0.035	0.033	0·0 3 6		
C(9)	0.053	0.037	0.045	C(19)	0.055	0.054	0.050	I	0.004	0.004	0.003		
(C10)	0.049	0.040	0.037	()									

and 1.545 Å,6 respectively. The average sp3-carbon-nitrogen(4) bond length of 1.49 Å is in reasonable agreement with the lengths of such bonds in other alkaloids (for a fuller discussion see Hamilton et al.⁷). The average sp^2 -carbon-nitrogen(1) bond length is

FIG. 3. The crystal structure as viewed in projection on (010).

considerably shorter (1.33 Å) and as the radius of an sp^2 -hybridized carbon atom is only 0.02-0.03 Å smaller than that of an sp^3 -hybridized carbon atom it follows that there is a difference in the covalent radii of the two types of nitrogen atom and/or a degree of

Sutton et al., "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ., No. 11, 1958.
' Hamilton, Hamor, Robertson, and Sim, J., 1962, 5061.

double-bond character associated with the sp^2 -carbon-nitrogen(1) bonds. The carbonoxygen bond lengths in the ester and alcohol groups show no significant deviations from the usual values. The length of the carbon-carbon double bond in the ethylidene group, 1.31 Å. does not differ significantly from the value of 1.334 Å in ethylene.⁸

The molecular arrangement in the crystal as seen in projection along the *b* axis is illustrated in Fig. 3. The positively charged macusine-A molecules and the negatively charged iodide ions are held together by the normal ionic forces, by van der Waals forces, and by hydrogen bonds which involve the indole nitrogen atom, the ketonic oxygen atom of the ester group, the hydroxyl oxygen atom O(27), and the iodide ion. The N(1)H···O(26) distance of 2.98 Å is comparable with N···O hydrogen-bonded distances in other crystals (e.g., 2.79, 2.83, 2.96 Å in L-serine phosphate,⁹ 2.68, 2.75, 2.86, 2.89 Å in glycyl-L-tryptophan dihydrate,¹⁰ 2.86, 2.92, 2.94 Å in L-glutamic acid ¹¹). The C(2)N(1)O(26) angle is 109°. The O(27)H···I hydrogen-bonded distance of 3.43 Å is similar to O···I distances in muscarine iodide (3.57 Å),¹² (+)-de(oxymethylene)-lycoctonine hydriodide monohydrate (3.65 Å),¹³ and (+)-demethanolaconinone hydriodide trihydrate (3.52—3.62 Å).¹⁴ The C(17)O(27)I angle is 107°.

The closest contacts between an iodide ion and carbon atoms, 3.93 and 3.95 Å, are similar to the minimum C····I⁻ distances in the crystal structures of muscarine iodide (3.87 Å),¹² (+)-de(oxymethylene)lycoctonine hydriodide monohydrate (3.81 Å),¹³ and isocryptopleurine methiodide (3.96 Å).¹⁵

A full list of the intermolecular contacts of less that 4 Å is given in Table 2.

Experimental

Crystal Data.—Macusine-A iodide, $C_{22}H_{27}IN_2O_3$; *M*, 494·4; m. p. 274° (decomp.). Orthorhombic, a = 13.82, b = 9.06, c = 17.43 Å, U = 2182 Å³, $D_m = 1.50$ g. cm.⁻³ (by flotation), Z = 4, $D_c = 1.50$ g. cm.⁻³, space group $P2_12_12_1 - D_2^4$. Absorption coefficient for X-rays ($\lambda = 1.542$ Å) $\mu = 127$ cm.⁻¹.

The crystals were obtained from aqueous solution in the form of fine needles elongated along a.

Experimental Measurements.—Rotation, oscillation, and Weissenberg photographs were taken with copper- K_{α} ($\lambda = 1.542$ Å) radiation; precession photographs were taken with molybdenum- K_{α} ($\lambda = 0.7107$ Å) radiation. The cell dimensions were obtained from the precession and rotation photographs. The space group was determined uniquely from the systematic halvings in the reflexions. For the intensity survey a small crystal was employed, completely bathed in a uniform X-ray beam, and no corrections for absorption were applied. The intensities were estimated visually from equi-inclination Weissenberg photographs of the 0kl—8kl layers; the multiple-film technique was employed. The usual correction factors (Lorentz, polarization, and rotation ¹⁶) were applied and 1145 independent structure amplitudes were derived. The exposures were such that the various layers were approximately on the same relative scale; the absolute scale of each layer was obtained at a later stage by correlation with the calculated structure amplitudes, $|F_c|$.

Analysis of the Structure.—The analysis proceeded directly on the basis of the usual phasedetermining heavy-atom method.¹⁷ The initial co-ordinates of the iodide ion were determined

⁸ Bartell and Bonham, J. Chem. Phys., 1957, 27, 1414.

^{*} McCallum, Robertson, and Sim, Nature, 1959, 184, 1863.

¹⁰ Pasternak, Acta Cryst., 1956, 9, 341.

¹¹ Hirokawa, Acta Cryst., 1955, 8, 637.

¹² Jellinek, Acta Cryst., 1957, 10, 277.

¹³ Przybylska, Acta Cryst., 1961, 14, 424.

¹⁴ Przybylska, Acta Cryst., 1961, 14, 429.

¹⁵ Fridrichsons and Mathieson, Acta Cryst., 1955, 8, 761.

¹⁶ Tunell, Amer. Min., 1939, 24, 448.

¹⁷ Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.

1837

by calculating the two-dimensional Patterson synthesis along the *a*-axis (Fig. 4) and the section at $z = \frac{1}{2}$ through the three-dimensional Patterson synthesis (Fig. 5).

The first three-dimensional Fourier synthesis was evaluated with the measured values of the structure amplitudes and the phase constants appropriate to the iodine atom alone. When the resulting electron-density distribution was displayed as contoured sections drawn on sheets of glass and stacked in a frame various significant peaks were apparent. These could be attributed to carbon atoms (2), (3), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (19), (20), (21), (22), (23), nitrogen atoms (1) and (4), and oxygen atom (25). Co-ordinates were assigned to these atoms and they were included in the calculation of a second set of structure amplitudes and phase constants. The value of R, the average discrepancy between the calculated and measured structure amplitudes, was $27 \cdot 4\%$.

FIG. 5. Section through the threedimensional Patterson synthesis at $z = \frac{1}{2}$.

FIG. 4. Patterson projection along the *a*-axis.

The improved phase constants were employed in the computation of a second threedimensional Fourier synthesis in which it was possible to locate without ambiguity the remaining atoms C(17), C(18), C(24), O(26), and O(27). When structure factors were recalculated with the inclusion of these additional atoms the value of R fell to 21.3%.

Three further rounds of structure-factor and Fourier calculations were carried out. Backshift corrections for terminations of series were derived at each stage from a three-dimensional F_c synthesis and individual isotropic temperature factors were assigned. The value of R was reduced to 16.7%.

The refinement was concluded by performing two cycles of least-squares adjustment of the positional and anisotropic thermal parameters of the atoms; the programme employed was that devised by Dr. J. S. Rollett.¹⁸ The value of the discrepancy factor R fell to 14.5%.

The theoretical atomic scattering factors employed in the structure-factor calculations were those of Berghuis *et al.*¹⁹ for carbon, nitrogen, and oxygen, and the Thomas-Fermi values ²⁰ for iodine. The final atomic co-ordinates are listed in Table 1, details of the progress of the analysis are summarized in Table 4 and the final values of $|F_o|$, $|F_c|$, and α are shown in Table 5. The parameters defining the anisotropic thermal vibrations are in Table 6; they are values of b_{ij} in the equation

 $\exp(-B\sin^2\theta/\lambda^2) = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{34}l^2 + b_{12}hk + b_{23}kl + b_{12}hl}$

¹⁸ Rollett, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 87.

Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
"Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, Vol. II, p. 572.

TABLE 4. Progress of the structure analysis. Patterson syntheses I atom 1st F calculation (R = 31.6%)1st three-dimensional F_o synthesis I + 22 light atoms 2nd F calculation (R = 27.4%)2nd three-dimensional F_{o} synthesis I + 27 light atoms 3rd F calculation (R = 21.3%)3rd three-dimensional F_o synthesis 1st three-dimensional F_{e} synthesis 4th F calculation (R = 18.7%)4th three-dimensional F_{\bullet} synthesis 2nd three-dimensional F_{\bullet} synthesis 5th F calculation (R = 17.3%) 5th three-dimensional F_o synthesis 3rd three-dimensional F_e synthesis 6th F calculation (R = 16.7%)Two rounds of least-squares refinement of co-ordinates and anisotropic temperature factors (R = 14.5%)

¥

Final three-dimensional F_{\bullet} synthesis.

The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by application of the equation

$$\sigma^2(x_i) = \sum w_j (\Delta F_j)^2 / [(n-s) \sum w_j (\partial F_j / \partial x_i)^2].$$

The results are listed in Table 3.

The final three-dimensional electron-density distribution was evaluated on the basis of the phase constants in Table 5 and is shown in Fig. 1 by means of superimposed contour sections drawn parallel to (010). The corresponding atomic arrangement is illustrated in Fig. 2.

TABLE 5.

Measured and calculated values of the structure factors.

h	k	i	Fo	$F_c \propto$	h k	i	F,	$F_c \alpha^\circ$	h	k	l	F_o	F_c α°	h	k	l	F_o	F_c	α°	ĥ	k	l	F_o	F_c	α°	h	k	l	F_o	F_c	α°
0	0	24 6 8 10 12 14	130 12 70 29 12 67 74	164 0 1 0 78 180 46 180 18 180 59 0 68 0		4 56 9 12 14	19 20 19 11 20	17 0 11 180 24 0 25 0 15 0 12 180 17 180			1234567	36 51 29 13 42 45	34 24 49 282 29 150 17 161 43 112 42 86 14 184	2	4	14 15 16 17 18 0 1	11 15 15 17 55 53	14 7 16 16 47 39	2 216 87 197 102 0 141			7 8 9 10 11 12 13	73 21 26 56 23 37 41	73 36 57 23 41	165 158 162 184 49 213 29			3456789	69 25 20 73 37 89 31	67 21 27 87 40 91	40 293 356 356 266 353 236
0	1	15 20 22	37 24 9 46	35 0 21 180 9 180 34 270 21 90	0 9	1 4 7 9	20 12 21 11	32 270 18 270 29 90 16 90 16 270			8 9 10 11 12	37 10 10 11 17	43 90 17 251 14 55 13 295 25 282			23456	38 85 41 50 28	40 81 42 46 27	329 179 276 195 248			14 15 16 17 18	20 22 29 23 13	23 22 33 20 12	256 327 339 269 346			10 11 12 13 14	16 33 56 17 33	19 27 50 19 35	21 165 176 116 116
		54.524	31 58 80 16	38 90 69 270 91 270 20 270 142 270	0 10	02681	19	22 0 19 0 17 180 18 180 18 90	1	7	13 14 0 1 2	10 25 19 51 32	10 307 25 267 11 90 53 328 31 180			8 9 10 11	17 51 37 29	20 53 46 35 20	74 347 94 16 86	3	3	01234	80 103 48 86 78	71 75 43 79 61	90 10 79 66 301	4	2	15 16 20 0 1	13 15 11 88 84	15 18 15 70 75	49 205 353 180 5 267
		8 9 10 11 11	28 92 31 26 8	30 90 101 270 32 90 17 90 7 90	1 0	23456	14 4 5	8 8 0 5 198 90 7 57 180 8 81 90 5 34 180			34567	10 39 32 18 33	6 338 39 182 34 224 15 227 34 177	2	5	13 14 16 17 0	15 16 10 23 12	22 16 12 22 10	22 338 269 169 180			56789	75 72 77 49 43	62 68 74 59 51	109 286 180 255 225			23456	59 27 94 89 39	40 21 76 66 33	60 28 55 55 30
		13 15 16 17 18	61 28 20 9 15	53 90 24 90 16 270 3 90 13 270		7 8 9 10 11	1 7 1 6	5 270 17 0 79 270 12 0 76 270			8 9 10 12 13	17 13 18 12 12	17 302 18 147 25 344 17 36 17 4			12345	43 79 72 92 52	32 75 68 80 48	324 286 355 258 1			10 11 12 13 14	39 21 11 20 14	46 22 14 23 15	201 279 198 0 93			7 8 9 10 11	73 32 34 39 18	85 41 41 41 41	97 286 106 283 7 177
0	2	19 20 20 19	25 12 15 343 75	13 270 2 270 12 270 325 180 72 0		12 13 15 17 18	10 20 1 2 1	5 16 0 34 270 5 11 90 7 24 90 7 180	1	8	14 15 16 0 1	9 11 11 13 22	2 100 12 352 11 172 17 90 23 242			6 7 8 9 10	29 10 12 31 39	30 9 17 35 48	246 230 134 176 92	3	4	15 16 17 0 1	12 11 13 64 113	10 11 18 55 107	342 74 80 90 167			12 13 15 16 18	30 45 18 25 14	32 47 19 24 14	254 269 277 138 75
		~~~~	32 129 101 88 110	18 0 130 0 91 0 94 0 119 0	1 1	19 20 0 1 2	10 2 50 10	17 90 0 180 10 90 42 119 79 152			34567	33 17 33 18 10	34 287 22 342 35 270 18 274 3 324			11 12 13 16 18	24 11 13 16 17	24 22 17 18 17	161 98 160 290 261			23456	42 51 45 53	39 48 37 37 47	102 155 199 11 262	4	3	01234	90 69 53 141 13	80 52 41 126	0 195 41 5 198 109
		76 00 10	20 50 42 28 55	15 180 68 0 46 180 29 0 56 180		34 56 7	7 15 91 51	80 259 169 176 100 310 78 174 53 11	1	9	8 9 11 13 1	16 12 16 8 13	19 257 21 84 22 103 8 109 14 126	2	6	01234	27 38 32 56 57	19 38 29 52 50	0 21 26 6 72			7 8 9 10 11	64 31 33 11 24	60 35 39 16 29	344 281 350 325 189			56789	93 44 35 39 37	89 47 39 45 39	185 172 172 198 198
		12 13 14 15 16	23 17 31 15 29	19 180 16 180 29 180 11 0 28 180		8 9 10 11 12	5724	66 7 41 43 93 7 5 23 112 47 347			2 4 5 10 11	24 27 14 13 11	27 351 27 349 20 80 19 179 6 281			56789	37 30 10 20 33	41 24 7 29 36	1 124 274 220 189	3	5	12 13 14 15 0	16 57 17 26 96	17 66 20 28 83	78 193 166 270			11 12 14 15 16	35 20 12 12	42 36 20 11	320 332 222 222 313
0	3	17 18 19 20 1	15 14 13 22 84	15 0 7 9 11 0 16 0 80 270		15 16 17 18	23	15 159 21 214 3 36 179 1 13 260 24 181	1	10	15 3 4 5 10	17 11 16 11	20 97 13 209 26 86 5 325	2	7	10 11 0 1 2	19 21 47 35 47	28 32 41 35 46	275 181 180 113 131			12345	53 29 37 34	48 25 35	291 142 97 31	4	4	10 123	20 50 35 103 48	44 29 85 46	106 272 176
		4567	52 55 20 43	51 270 56 90 11 90 46 90	1 2	19 0	17 6 8 22	142 270 66 357 66 306 180 260	2	0	2423	9 10 70 22	14 191 15 171 94 0 16 270			34567	31 35 37 13 24	31 37 37 18 23	162 61 240 53 263			6 7 8 9 10	54 54 42 31 11	50 54 48 36 12	95 1 106 2 49			5678	41 30 27 26	79 41 35 25	207 215 263 5272 70 70
		9 10 11	48 26 54 29	45 90 51 270 33 90 58 270 29 270	1 2	156780	8) 50 14	85 263 57 77 15 212 64 112			• 56 7 8 0	66 83 76 54	70 270 94 180 85 270 70 180	2	8	8 9 10 15 0	16 19 17 10 17	20 21 17 12	518 306 280 104 180	3	6	13 14 0	17 21 54 32	19 18 22 50 32	200 202 269 270 15			10 11 12 16	41 17 36 23	19 50 25 43 24	93 350 82 289
~		13 15 16 18	52 18 23 18	50 270 50 270 19 270 18 90 15 90		10 11 12 13	200	32 134 39 86 25 227 17 67			10 11 12 13	22 13 39 27	26 180 13 90 31 0 24 90			23456	13 13 16 23	14 14 18 23 26	216 187 292 147 349			474567	25 15 34 31	19 11 38 29	13 175 174 106	4	5	10 1 2 3 4	48 37 95 31	44 39 89 27	338 312 357 289
U	•	12345	115 52 42 178 12	46 180 35 180 177 180 3 180	13	17 19 0 1	2016	28 279 11 245 49 90 170 338	2	,	15 16 19 20	19 11 14 13	15 90 5 0 13 270 13 180	2	9	8012	20 20 27 15	231 23 20 20	101 12 264 327			8 9 10 11	18 25 17 12	20 31 21 14	69 201 284			9 11 13	19 29 25 12	20 38 36 14	216 188 177 198
		9 9 11 14	25 52 37 13	17 180 55 0 49 0 11 0		174567	57566	41 45 65 6 39 143 63 310 66 191	2	1	12345	224 76 62 82	174 75 64 195 64 31 82 302	2	10	5601	19 10 14 9 15	17 13 14 16	181 82 179 0 104	3	7	13 14 15 0	18 19 19 57	25 19 12 56	358 254 350 90	4	6	17 02 3	20 11 41 21	21 11 39 16	346 89 323
o	5	17 19 1	15 34 16 26 48	29 180 14 180 17 270 39 270		8 9 10 11	30	40 [°] 227 35 [°] 205 48 [°] 197 5 [°] 17 [°] 339			767890	66 93 38 37	45 292 77 341 115 274 41 342 47 253	3	0	01234	15 75 94 71 146	109 100 86 161	90 180 90 180			23456	39 33 32 23	41 31 31 22	131 277 201 238			156780	23 19 23 28	24 21 23 30	306 118 246 244
		45678	93 23 36 11	91 270 18 270 38 270 12 270		13 14 15 16	5	56 350 50 75 510 75 518 19 11 175			11 12 13 14	28 22 46 39	24 138 22 177 46 100 43 173 29 79			767890	42 49 95 24	50 51 40 74 22	180 270 270			7 8 12 13	25 12 15 10	22 17 21 14	193 285 50 45	4	7	10 11 12 16	22 13 15 15	32 13 23 17	275 150 267 104
		10 12 13 16 18	49 31 15 29 18	54 90 36 90 14 270 21 270 16 270	14	0 1 2 3 4	10 7 6 7	86 90 62 169 63 106 67 40 42 280	2	2	16 19 0 1 2	13 13 31 146 125	12 214 11 285 17 180 115 303 110 186			11 12 13 15	31 36 38 12	33 35 39 12	270 0 270 90	3	8	12345	19 26 22 29 17	22 29 22 27	218 14 267 340 308			12356	19 32 35 18 22	17 36 23	148 155 176 195 195
¢	6	01234	38 41 52 79 16	38 0 34 0 49 0 73 0 14 180		56 78 9	10 10 10 20	11 30 100 270 12 330 82 277 23 312			34567	95 111 47 109 21	86 352 85 48 35 6 104 22 27 81	3	1	17 18 19 0	18 24 10 151 35	16 27 11 137 51	90 180 90 270 306	3	9	6 7 8 10 1	18 11 16 18 11	19 15 20 22	318 354 216 185 125			7 8 9 11	13 13 15 15 15	21 24 22	30 359 332 0 41
		5 6 8 9 11	56 34 24 35 31	53 0 36 180 20 180 36 180 35 180		10 11 12 13 14	1	5 20 280 17 304 3 22 81 0 8 265 5 27 90			8 9 10 11 12	49 48 26 35 29	67 345 57 141 32 301 38 209 26 198			23456	85 138 110 60 46	82 134 115 80 60	229 278 174 308 180			23456	16 26 17 17 15	19 28 18 18	356 91 10 86 30	4	8	12345	22 15 18 15	29 17 18 23	275 257 226 226 272 272
c	7	13 14 17 1 2	9 12 15 12 22	16 180 12 0 13 0 7 90 17 90	15	16 17 18 20 0	14	18 88 8 102 5 225 11 266 3 50 270			13 14 15 16 17	35 34 16 15	38 240 38 178 16 307 15 138 16 342			7 8 9 10 11	43 14 62 74 52	46 21 62 68 49	540 68 58 395	3 4	10 0	9 0 2 1 2	13 12 15 70 9	16 2 18 92 9	276 270 180 90 0			6 7 8 9 13	12 24 12 12	15 29 17 21 12	331 91 45 80 270
		34567	12 53 24 15 31	12 270 55 90 23 270 14 90 32 270		12345	94 22 7	91 162 41 314 5 29 272 5 22 251 61 2	2	3	19 0 1 2 3	11 68 85 109 103	10 28 59 0 77 248 95 86 96 178			12 14 15 16 17	27 18 12 14 14	25 17 6 13 13	336 267 150 193 270			54567	34 12 83 73 119	47 . 9 86 67 132	90 180 270 180 270	4	9	01267	25 12 12 16 11	28 14 21 24	245 245 182 90
		9 10 12	24 20 22 17	29 270 28 270 26 270 20 270 12 90		6 7 8 9 11	26	66 352 19 84 45 354 12 186			456780	100 61 79 53 38	92 99 61 175 74 150 57 80 40 222	3	2	18 19 0 1 2	11 12 71 86 99	14 12 67 63 89	193 285 270 301 338			9 10 12 13	46 12 14 54	53 12 51 29	270 180 90 90	4 5	10 0	81123	15 19 11 34 5	21 21 19 57	178 94 180 90
e	8	16023	14 76 45 24	13 90 74 180 51 180 25 180	16	13 15 19 0	20 22 10 11	40 176 29 189 9 10 102 270			1011217	43 50 25 25 25	51 52 59 256 28 4 37 265 29 303			3456	116 78 61 37	101 73 58 41	298 351 205	4	1	19 19	15 268 66 106	14 235 55 97	270 180 0 205			4 176 8 9	20 47 27 24	16	270 180 180 270

# The Structure of Macusine-A.

TABLE 5. (Continued.)

h	k	1	$F_{\alpha}$	$F_c  \alpha^\circ$	h	k	1	$F_{\alpha}$	$F_c \propto^{\circ}$	h	k	l	$F_{c}$	$F_{c}$	α°	h	k	1	$F_{c}$	F _c	α°	h	k	ı	$F_{c}$	F,	α°	h	k	1	$F_{o}$	F _c	α°
5	1	10 12 16 18 0 1 2 3 4 56	75 39 20 18 49 79 31 143 19 48 20	74 0 40 0 20 180 25 180 57 270 72 54 32 343 137 269 8 65 64 269 24 118	5	6	5678214 1412345	25 62 12 46 24 25 24 25 24 21 23 77	17 24 61 90 10 264 52 94 30 258 65 347 21 174 15 2 27 185 32 166	6	2	16 20 1 2 3 4 56 7 8	12 10 80 142 61 70 97 559 25 592 22	18 12 70 116 52 51 80 23 65 19	169 348 260 81 194 69 164 135 87 176	6	8	12345680123	13 16 34 29 20 24 18 22 26 16	14 15 30 326 988 205	140 198 205 314 197 339 12 0 257 296 291			234567891134	78 45 60 49 27 34 18 37 21	7 58 58 51 42 51 42 51 51 51 52 51 52 51 52 51 52 52 52 52 52 52 52 52 52 52 52 52 52	125 93 207 35 279 354 268 321 245 193 85	8	1	13 14 15 0 1 2 3 4 5 6 7 8	33 23 18 54 103 11 10 23 48 30 54	22691125554	90 180 180 272 195 195 263 11 93 339
5	2	7 8 9 10 11 12 14 15 17 1 2 3 4	28 20 71 50 12 28 16 25 120 95 42 158	•26 146 24 105 65 85 12 86 12 274 38 91 13 264 23 259 28 267 98 341 73 356 35 322 123 359	5	7	679112301234567	25 48 15 13 15 44 33 15 16 23	22 158 50 179 28 186 15 334 16 25 20 3 47 90 37 295 15 118 33 299 11 300 24 286 28 269 14 51	6	3	90112301234567	27 29 15 30 20 44 66 46 107 21 53 65 13	352 1552 2522 2435 3539 141558 8	85 274 299 271 259 123 192 191 181 181 182 355	6 7 7	9 10 0	45670211234567	18 15 12 15 22 12 11 16 77 80 78 23 23	1970125704467514	224 89 235 108 7 63 270 180 270 180 270 180 270 180 270	7	4	16 0 1 2 3 4 56 7 8 9 0 3	16 22 89 56 20 55 76 20 55 76 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 20 57 5 20 57 57 5 20 57 57 57 57 57 57 57 57 57 57 57 57 57	171 219 479 187 218 479 124 479 124 479 125	155 122 270 177 252 197 159 159 101 350 101 348 2102 22 342 183	8	2	90113501234567	17 12 23 23 55 75 6 25 57 6 25 55 75 1 326 410	1213243652434	120 315 110 258 272 320 320 320 320 320 320 320 320 320 32
5	3	56789021560123	56 365 280 537 20 537 21 18 117 14 65	44 139 38 19 77 202 28 156 34 188 60 180 37 165 23 356 21 355 17 1 91 90 8 144 57 119 71 83	5 5 5	8 9 10 0	89112469135412	263212 2223 12212 1222 1222 1222 1222 12	33 252 13 69 21 94 25 147 21 350 34 357 18 351 8 32 20 69 26 95 21 76 23 194 127 90 1 0	6	4	8 9 10 11 12 13 14 15 17 0 1 2 3 4	24 46 12 35 16 13 11 37 55 80	23 59 14 17 17 14 13 19 26 51 570	182 345 169 230 55 163 187 846 2347 287 287 287 287 287 287 287	7	1	891011214 15161701234	16 42 68 20 17 120 15 28 46 32 73 78	1317283321276434 121276344 74	0 90 90 270 180 270 317 332 300 9	7 7	5	01294567893401	81 390 24 19 34 17 16 93 30 17 16 93 30	747777777777777777777777777777777777777	270 349 63 187 118 173 102 186 252 90 350	8	3	901124012345678	557223 2381955634 56364 397432237	52152544464221	190 17 278 336 336 19 19 294 222 267 228 3267 228 3267 228 3267 228 3267 228 3267 228 3267 228 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 2294 228 228 228 228 228 228 228 22
5	4	4 567 8 9 11 12 13 14 16 7 0	30 39 78 10 53 32 21 34 21 26 12 12 18	26 316 40 95 82 285 7 359 58 264 34 24 22 238 39 91 22 246 29 87 17 97 14 99 12 90	6	1	3456789123560 1123560	18 24 20 57 41 49 12 330 13 77	20 90 26 0 25 270 50 0 81 270 41 0 5 90 32 180 36 90 31 90 7 180 86 180	6	5	567890112161234	42 43 327 19 34 13 4 13 4 3 74 21	40 41 37 15 25 44 14 34 14 32 11 70 21	351 288 223 46 205 86 161 106 273 329 101 6 154	7	2	5678910 112136701	406 153 412 380 176 156 5 45	6381593346718014553	275 76 189 153 82 185 73 185 73 185 73 182 43 343 288 90 4	<u>,</u> 7 7	7 .	74567890154680	294 17 24 27 17 21 24 24 24 24 27 17	279219 279229 279229 290404 9919	230 206 233 163 295 187 90 188 295 295 295 295 230 230	8	4	1011212345689211	29376 2276 31546 477 226 300 1300	3222244423312	96 330 268 272 379 249 189 188 518 188 525
5	5	1 2 3 4 5 6 7 9 0 3 5 0 1 5 0 1	126 25 39 48 15 70 42 18 20 97 25	99 164 13 138 4 224 32 192 43 333 14 81 76 359 46 359 46 359 14 20 29 189 22 185 91 270 21 41			12345678901123	21 67 38 57 24 112 19 60 31 14 17 37 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	59115012345680	44 36 24 11 25 34 49 54 20 33 22	42 53 51 29 44 39 51 20 23 12 30 23	1 192 171 347 180 92 108 139 74 219 63 321 265			2 3 4 5 6 7 8 9 0 1 1 2 3 6 1 1 2 3 1 6	69 54 59 50 38 30 45 16 21 24 16	48533934388254 12254	13 71 324 134 327 177 237 232 193 278 171 339 0	78	9	1234312345678	17 20 15 39 26 23 451 26 23 451 26	151 212 212 208 49 255 36 555 6	135 2 104 354 90 180 90 180 90 5 270 5 270 5 270	'e	6	2345600123456	12 30 50 18 23 19 23 23 27 23 27 29	242231223222	193 353 355 260 160 111 5188 207 207 207 207 207 207 207 207
		24	42	40 279 9 107			14 15	33 13	38 185 7 331	6	7	12	15 31	20 29	284 180	7	3	0 1	107 48	81 36	90 132			9 12	16 35	20 38	270 180	8	8	. 2340	27 13 19 19 22	2 1 2 2	244 3 248 9 216 5 265 6 0

### TABLE 6.

## Anisotropic temperature-factor parameters ( $b_{ij} \times 10^5$ ).

	$b_{11}$	$b_{22}$	$b_{33}$	$b_{12}$	b23	b13		$b_{11}$	$b_{22}$	b 38	b12	b 33	b13
N(1)	494	1540	<b>544</b>	-1	-9	114	C(15)	<b>244</b>	2157	680	-230	-494	456
C(2)	325	1770	586	95	37	314	C(16)	1329	1122	744	-356	263	1411
C(3)	144	2676	935	-356	<b>682</b>	-688	C(17)	341	2307	808	-684	338	-506
N(4)	996	1549	601	-8	<b>20</b>	-304	C(18)	915	2044	787	-63	303	46
C(5)	992	2397	737	84	791	271	C(19)	<b>406</b>	2424	858	-249	92	-977
C(6)	119	2068	602	<b>228</b>	379	-1019	C(20)	667	2121	588	-358	63	114
C(7)	918	2049	699	735	-151	-460	C(21)	1129	2700	651	<b>244</b>	290	627
C(8)	1033	1226	504	419	112	1026	C(22)	491	1677	744	-65	165	-1689
C(9)	351	1496	726	3	-935	-709	C(23)	1654	1371	1033	1016	88	74
C(10)	463	1625	524	-82	-68	-293	C(24)	2465	2033	476	-111	-1226	-185
C(11)	1243	1489	818	60	-263	-678	O(25)	336	2138	625	79	149	242
C(12)	1647	1349	677	497	-559	132	O(26)	<b>298</b>	1697	889	-22	107	-370
C(13)	528	1243	607	188	113	322	O(27)	398	2081	976	3	120	-407
C(14)	707	2673	724	617	-313	723	Ι	814	1964	609	66	145	1

The extensive calculations were carried out on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. We are grateful to Dr. A. R. Battersby for suggesting the problem and for supplies of material. One of us (A. T. McP.) is indebted to the Department of Scientific and Industrial Research for financial support.

Chemistry Department, The University, Glasgow, W.2, Scotland.

[Received, October 5th, 1962.]